文章摘要
马晓旦,武经纬,梁士栋,赵天羽.基于融合模型动态权值的短期客流预测方法[J].交通运输研究,2019,5(4):127-132.
基于融合模型动态权值的短期客流预测方法
Short-Term Passenger Flow Prediction Method Based on Dynamic Weight of Fusion Model
  
DOI:
中文关键词: 短期客流预测  融合模型  智能交通  卡尔曼滤波算法  KNN算法
英文关键词: short-term passenger flow prediction  fusion model  intelligent transportation  Kalman filter algorithm  K-Nearest Neighbor(KNN) algorithm
基金项目:国家自然科学基金项目(71801153;71801149)
作者单位
马晓旦 上海理工大学管理学院 
武经纬 上海理工大学管理学院 
梁士栋 上海理工大学管理学院 
赵天羽 上海理工大学管理学院 
摘要点击次数:
全文下载次数:
中文摘要:
      针对传统交通系统中短期客流预测精度低的问题,考虑城市交通站点客流数据在横纵向时间序列的规律性,基于卡尔曼滤波算法和K近邻(K-Nearest Neighbor, ANN)算法,分别根据当日数据和历史数据对客流量进行预测,然后利用权重系数方程对两个预测值加以融合,从而构建基于融合模型动态权值的短期客流预测方法。以某城市的某公交站点客流数据为研究对象,对所建融合模型短期客流预测的准确性和适用性加以验证。结果表明,新建模型、单一的卡尔曼滤波模型和KNN模型的平均相对误差分别为3.6%, 9.0%和7.7%,可见新建模型能更好地拟合客流变化趋势且评价效率更高。
英文摘要:
      In order to solve the problem of low accuracy of short-term passenger flow prediction in traditional transportation system, considering the regularity of transverse and longitudinal time series for passenger flow data at urban traffic stations, the short-term passenger flow was predicted according to current data and historical data respectively based on Kalman filter algorithm and K-Nearest Neighbor(KNN) algorithm respectively. By using the dynamic weights coefficient equation to fuse the two predicting values of the Kalman filter algorithm and KNN algorithm, a new short-term passenger flow prediction method based on the fusion model was constructed. Taking the passenger flow data of a bus station in one city as an example, the accuracy and applicability of the proposed fusion model for short-term passenger flow prediction was verified. The results show that the average relative error of the new model, the single Kalman filter model and KNN model is 3.6%, 9.0% and 7.7%. It means that the new model can better fit the trend of passenger flow and has higher efficiency.
查看全文   查看/发表评论  下载PDF阅读器